We supply all kinds of diesel particulate filter


A diesel particulate filter, sometimes called a DPF, is a device designed to remove diesel particulate matter or soot from the exhaust gas of a diesel engine. Wall-flow diesel particulate filters usually remove 85% or more of the soot, and can at times (heavily loaded condition) attain soot removal efficiencies of close to 100%. A diesel-powered vehicle equipped with functioning filter will emit no visible smoke from its exhaust pipe.

In addition to collecting the particulate, a method must exist to clean the filter. Some filters are single use (disposable), while others are designed to burn off the accumulated particulate, either through the use of a catalyst (passive), or through an active technology, such as a fuel burner which heats the filter to soot combustion temperatures, through engine modifications (the engine is set to run a certain specific way when the filter load reaches a pre-determined level, either to heat the exhaust gases, or to produce high amounts of NO2, which will oxidize the particulates at relatively low temperatures), or through other methods. This is known as "filter regeneration". Sulfur in the fuel interferes with many "regeneration" strategies, so almost all jurisdictions that are interested in the reduction of particulate emissions, are also passing regulations governing fuel sulfur levels.

Variants of DPFs
Unlike a catalytic converter which is a flow-through device, a DPF cleans exhaust gas by forcing the gas to flow through the filter. There are a variety of diesel particulate filter technologies on the market. Each is designed around similar requirements:

Fine filtration
Minimum pressure drop
Low cost
Mass production suitability
Product durability

Cordierite wall flow filters
The most common filter is made of cordierite (a ceramic material that is also used as catalytic converter supports (cores)). Cordierite filters provide excellent filtration efficiency, are (relatively) inexpensive, and have thermal properties that make packaging them for installation in the vehicle simple. The major drawback is that cordierite has a relatively low melting point (about 1200 °C) and cordierite substrates have been known to melt down during filter regeneration. This is mostly an issue if the filter has become loaded more heavily than usual, and is more of an issue with passive systems than with active systems, unless there is a system break down.

Cordierite filter cores look like catalytic converter cores that have had alternate channels plugged - the plugs force the exhaust gas flow through the wall and the particulate collects on the inlet face.

Silicon carbide wall flow filters
The second most popular filter material is silicon carbide, or SiC. It has a higher (2700 °C) melting point than cordierite, however it is not as stable thermally, making packaging an issue. Small SiC cores are made of single pieces, while larger cores are made in segments, which are separated by a special cement so that heat expansion of the core will be taken up by the cement, and not the package. SiC cores are usually more expensive than cordierite cores, however they are manufactured in similar sizes, and one can often be used to replace the other.

Silicon carbide filter cores also look like catalytic converter cores that have had alternate channels plugged - again the plugs force the exhaust gas flow through the wall and the particulate collects on the inlet face.

Metal fiber flow through filters
Some cores are made from metal fibers - generally the fibers are "woven" into a monolith. Such cores have the advantage that an electrical current can be passed through the monolith to heat the core for regeneration purposes. Metal fiber cores tend to be more expensive than cordierite or silicon carbide cores, and generally not interchangeable with them.

Disposable paper cores are used in certain specialty applications, without a regeneration strategy. Coal mines are common users the exhaust gas is usually first passed through a water trap to cool it, and then through the filter. Paper filters are also used when a diesel machine must be used indoors for short periods of time, such as on a forklift being used to install equipment inside of a store.

Partial filters
There are a variety of devices that produce over 50% particulate matter filtration, but less than 85%. Partial filters come in a variety of materials. The only commonality between them is that they produce more back pressure than a catalytic converter, and less than a diesel particulate filter. Partial filter technology is popular for retrofit.

Filter usage
A properly designed filter will have little effect on fuel usage, however improper installation can be catastrophic, which is why automobile and truck engine manufacturers have avoided the use of filter technology until now. It was first offered as standard by the French manufacturer PSA Peugeot Citroën in early 2000, and has been a huge success.Slow adoption by the German car industry sparked local protests in March 2005.

Filters require more maintenance than catalytic converters. Engine oil ash builds up on the surface of the inlet face of the filter, and will eventually clog the pores. This increases the pressure drop over the filter, which when it reaches 3.6 pounds per square inch (25 kPa) or higher it is capable of causing engine damage. Regular filter maintenance is a necessity.


FOB Price:
Minimum Order:
Payment Terms:

Ms he's Products

You can verify Ms he using your contacts and professional networks.

Recently Viewed Products
Popular Products on Tradesparq